荧光显微镜
MicroTime 100
正置时间分辨荧光显微系统
- 集成激发光源, 正置显微镜和多通道探测模块的一体化系统
- 脉冲二极管激光器波长从375到1060nm可选
- 多探测器选项,最多可达4个探测通道
- 通过XYZ-压电扫描平台实现三维寿命成像
- 可选大范围扫描台,扫描行程可达几厘米
MicroTime100是研究固体样本(如晶圆,半导体或太阳能电池材料)时间分辨光致发光的理想工具。整套系统基于常见的正置显微镜构建,可以用于观测各种规格大小的样品。同时,MicroTime 100可以集成厘米或微米级别分辨率的手动扫描方式和3D平面压电扫描台。
灵活的激发光子系统
MicroTime100的激发光子系统包含PDL系列的激光器驱动源和不同波长的皮秒脉冲激光器(连续出光模式可选)。激光器波长范围从375nm至900nm可选。激光器的出光功率和重复频率可由PDL系列的激光驱动器灵活调整。
激光头可以直接与MicroTime 100耦合,也可以通过LCU激光耦合单元和MicroTime 100系统相连接。激光耦合单元(LCU)通过优化的光学组件将多个激光头集成在一起,为了便于处理、衰减将激光输出信号耦合进入到一根光纤中。
单光子灵敏度的探测子系统
MicroTime 100不仅灵活性大,并且具有非常高的光收集效率。MicroTime 100可以配置多达四个探测通道,这些探测通道通过多模光纤耦合进入显微镜。该系统可以配备各种灵敏度的探测器,这些探测器针对波长、信号亮度或光物理属性(如无后脉冲效应)进行了优化。探测器的选择包括PMA系列或PMA Hybrid系列探测器和SPAD。
皮秒分辨率的计数模块
MicroTime100的数据采集基于独特的带时间标记时间分辨模式(TTTR)的时间相关单光子计数(TCSPC)技术。使用TTTR数据采集,仅基于一种基本数据格式,就可以执行从标准寿命测量到荧光寿命成像(FLIM)或TRPL成像甚至符合相关(“反聚束”)等极为不同的测量过程。PicoQuant所有的TCSPC电子设备都支持该TTTR数据格式。使用这些高端的集成器件,低至几个皮秒的荧光寿命或者高达毫秒的磷光寿命,以及发光研究都可以轻松解决。
直观的数据处理和分析
基于复杂的数据采集和处理,系统软件SymPhoTime 64支持多种分析方法,譬如强度随时间轨迹分析、突发分析、寿命柱状图、荧光相关光谱(FCS)、荧光寿命相关光谱(FLCS)、荧光寿命成像(FLIM)、荧光共振能量转移(FRET)和各向异性等。SymPhoTime 64数据处理采用一个透明的数据结构,所有派生数据都存放在一个工作区中,包括一个日志文件,用于跟踪所有测量和分析步骤。
SymPhoTime 64中已经集成了用于这些方法的大量算法,为准备发布的数据提供了一个分析平台。与此同时,SymPhoTime 64为用户集成新颖的尖端算法提供了更高的灵活性。
专用的脚本语言界面允许修改和扩展分析例程。除了SymPhoTime64软件内的数据分析外,数据还可以以标准格式导出,用于外部分析。
我们的互动用户论坛以及我们定期举办的SymPhoTime培训日,可以给新老用户提供出色的支持。
科学指导和用户培训
PIcoQuant每年举办《时间分辨显微和相关光谱》欧洲短期课程。本课程面向希望深入了解时间分辨荧光显微镜原理及其应用在生命科学领域的个人。这项为期三天的活动包括讲座、仪器仪表和软件实践培训。有关详细信息,请参阅课程网站。
激发模块 |
|
显微镜模块 |
|
物镜规格 |
|
扫描方式 |
|
主要光学部件 |
|
探测器 |
|
数据采集方式 |
|
交互软件 |
|
MicroTime 100是一款正置的时间分辨共聚焦显微镜,可用于多种应用中,例如:
- 荧光寿命成像(FLIM)
- 磷光寿命成像(PLIM)
- 时间分辨光致发光 (TRPL) 成像
- MicroPL 测量(与 PL 光谱仪耦合)
- 反束相关(g(2))测量
- 载流子扩散成像
- SHG 和 2PE 成像
Latest 10 publications referencing MicroTime 100
The following list is an extract of 10 recent publications from our bibliography that either bear reference or are releated to this product in some way. Do you miss your publication? If yes, we will be happy to include it in our bibliography. Please send an e-mail to info@picoquant.com containing the appropriate citation. Thank you very much in advance for your kind co-operation.
In-situ post-synthetic treatment of CsPbBr3 perovskite nanocrystals in nanoporous silica microspheres
Tatarinov D.A., Xie J., Qian Q., Wang Q., Maslova N.A., Borodina L.N., Litvin A.P., Huang H.
Chinese Journal of Chemistry, Vol.042, p.2779-2787 (2024)
Reference to: MicroTime 100
Identification an suppression of point defects in bromide perovskite single crystals enabling gamma-ray spectroscopy
Ni Z., Zhao L., Shi Z., Singh A., Wiktor J., Liedke M.O., Wagner A., Dong Y., Beard M.C., Keeble D.J., Huang J.
Advanced Materials, Vol.036, 2406193 (2024)
Reference to: TimeHarp 260, MicroTime 100
Barrier reinforcement for enhanced perovskite solar cell stability under reverse bias
Li N., Shi Z., Fei C., Jiao H., Li M., Gu H., Harvey S.P., Dong Y., Beard M.C., Huang J.
Nature Energy, Vol.009, p.1264-1274 (2024)
Reference to: FluoTime 100, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), MicroTime 100
Study and optimization of the photobiomodulation effects induced on mitochondrial metabolic activity of human cardiomyocytes for different radiometric and spectral conditions
Joniová J., Gerelli E., Wagnières G.
Life Sciences, Vol.351, 122760 (2024)
Reference to: MicroTime 100, SymPhoTime
Strategies for enhancing stability of perovskite solar cells and modules
Jiao H.
Dissertation University of North Carolina (2024)
Reference to: FluoTime 300, TimeHarp 260, PMA Series, MicroTime 100
Related to: TRPL
Sputtered NiO interlayer for improved self-assembled monolayer coverage and pin-hole free perovskite coating for scalable near-infrared-transparent perovskite and 4-terminal all-thin-film tandem modules
Kothandaraman R.K., Siegrist S., Dussouillez M., Krause M., Lai H., Pious J.K., Nishiwaki S., Gilshtein E., Müller A., Vidani A.C., Jenatsch S., Ruhstaller B., Jeangros Q., Carron R., Tiwari A.N., Fu F.
Solar RRL, early view, 2400176 (2024)
Reference to: MicroTime 100
Related to: TRPL
Hybrid photonic structures: gallium phosphide nanowires decorated with carbon dots for enhanced broadband emission
Zakharov V.V., Rider M.A., Kovova M.S., Koznetsov A., Anikina M.A., Efimova A.A., Kondratev V.M., Shmakov S.S., Kirilenko D.A., Parfenov P.S., Fedorov V.V., Orlova A.O., Bolshakov A.D.
Advanced Optical Materials, early view, 2303198 (2024)
Reference to: MicroTime 100
Sulfide-capped InP/ZnS quantum dot nanoassemblies for a photoactive antibacterial surface
Khan S.U., Surme S., Eren G.O., Almammadov T., Pehlivan Ç., Kaya L., Hassnain M., Onal A., Balamur R., Şahin A., Vanalakar S., Kolemen S., Alkan F., Kavakli I.H., Nizamoglu S.
ACS Applied Nano Materials, Vol.007, p.5922-5932 (2024)
Reference to: MicroTime 100
Related to: TRPL
Shunt mitigation toward efficient large-area perovskite-silicon tandem cells
Yang G., Yu Z.J., Wang M., Shi Z., Ni Z., Jiao H., Fei C., Wood A., Alasfour A., Chen B., Holman Z.C., Huang J.
Cell Reports Physical Science, Vol.004, 101628 (2023)
Reference to: MicroTime 100
Related to: FLIM
FRET-amplified singlet oxygen generation by nanocomposites comprising ternary AgInS2/ZnS quantum dots and molecular photosensitizers
Oskolkova T.O., Matiushkina A.A., Borodina L.N., Smirnova E.S., Dadadzhanova A.I., Sewid F.A., Veniamonov A.V., Moiseeva E.O., Orlova A.O.
Optics (2023)
Reference to: MicroTime 100
Related to: FRET
The following documents are available for download:
- Datasheet MicroTime 100
- Datasheet FlexWave wavelength selection unit
- Technical note: Time-Correlated Single Photon Counting (TCSPC)
- Application Note: Time-resolved Fluorescence Spectroscopy and Microscopy in Materials Science
- Poster: Quick Reference for confocal time-resolved microscopy (FLIM, FRET, FCS)
- MicroTime 100 broschure